STATE OF ALASKA

DEPT. OF ENVIRONMENTAL CONSERVATION

April 16, 1987

1/16/0

STEVE COWPER, GOVERNOR

(907)452-1714

Aciams

Northern Regional Office P. O. Box 1601 Fairbanks, Alaska 99707

Mr. Alvin L. Ewing Assistant Regional Administrator U.S. Environmental Protection Agency Alaska Operations Office 701 C Street, Box 19 Anchorage, Alaska 99513

Dear Mr. Ewing:

Enclosed with this letter are a copy of the report, Refinery Process Waste Water Details, and a portion of the report, Engineering Plan for Short Term Disposal of Refinery Process Waste Water, both prepared by MAPCO, Alaska Petroleum, Inc. for DEC and the City of North Pole Unfortunately, these reports were not available prior to completion of the RCRA hazardous waste inpection report for the North Pole Refinery but they may be useful nevertheless. By way of this letter, I have also distributed copies of these reports to the people listed below.

Please contact me if you or your staff have any questions on this material.

Sincerely,

Jerr Mach

Environmental Field Officer

JM.deb

Enclosures

cc: Dixon McClary, EPA/Region X, Seattle Bill Adams, EPA/Region X, Seattle Glenn Miller, ADEC/Juneau

100.23.016

COPY NO	NO.	870100-1
ISSUED TO_		
REVISION_		

MAPCO ALASKA PETROLEUM, INC.

1100 H&H LANE

NORTH POLE, ALASKA 99705

REFINERY PROCESS WASTE WATER DETAILS

PREPARED

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION MR. LARRY DIETRICK, NORTHERN REGIONAL OFFICE SUPERVISOR

AND

CITY OF NORTH POLE, ALASKA HONORABLE CARLETA LEWIS, MAYOR

MARCH, 1987

TABLE OF CONTENTS

Cover	· I	et	ter	٠.								٠					٠		Section	1
Sump	&	Ta	nk	Da	ta														Section	2
Plot	P1	an						٠									٠		Section	2
Sump	&	Wa	ste	W.	ate	er	Fl	OW	rI	Dia	agi	an	a.			٠			Section	2
Sump	&	Wa	ste	W.	ate	er	F1	.ow	, I	Dia	agr	ап	1.	*					Section	2
Chemi	ca	1	Inj	ec	tio	on	Sy	rst	en	n I	ro	CE	288	; I	Flo	wc			Section	2
Chemi	ca	1	Inj	ec	tio	on	Sy	st	e	n I	Pro	ce	ess	. 1	Flo	wc			Section	2
Waste	W	lat	er	Ana	aly	ysi	s						•		:				Section	3
Compl	ia	nt	Wa	st	e 7	Vat	er	T	ra	ans	fe	er	Sy	rst	ter	n.			Section	4
Waste	W	lati	er	Di	spo	osa	1	Ag	re	een	ner	t					٠		Section	5

\mathbb{Z}

MAPCO PETROLEUM NC.

1100 H &H LANE, NORTH POLE, ALASKA 99705 (907) 488-2741

LETTER OF INTRODUCTION

March 26, 1987

To Whom It May Concern:

We at MAPCO ALASKA PETROLEUM Inc. would like to thank Alaska Department of Environmental Conservation, Environmental Protection Agency and the City of North Pole for meeting with us and our retained consultant.

MAPCO is committed to comply with all EPA and ADEC regulations in treatment and disposal of process waste water. The information contained within this document is evidence of our commitment.

The purpose of our meeting today is to discuss and determine what) is necessary to meet all requirements for pre-treatment and disposal of plant process waste water.

Sincerely,

MAPCO ALASKA PETROLEUM Inc.

G. E. Fritz General Manager

GEF: jw

•

	SUMP NO.	PUMP NU.	PIT DEPTH	PIPING PLAN	UE!ALL PL	AN	PUMP MODEL	5126	THP UIA	GPM / HD	MOTOR NO	H P	H-14	h track
CAUDE UNIT SUMP	05/04-5	05101 05102	B	0-02 P1003 0-02 P1015 0-02 P1011 0-04 P1013 0-03 P1002 0-05 P1057 0-05 P1010 0-05 P1040 0-05 P1040	D 02/04 C1921	SHT 162	. GOULDS 3171	2.5 4 3 4 85	7.75	265/53			+000	1.N
PUDE/SULF OLAME	02/04-5	05102	8.	D-02-P1015					7 75	265/53		5 2	1800	17.1
HOT OIL/COOLING KENO	04-3	05103	8	D-02-F1011					1-7-75	265/53 265/53 265/53		1 2 -	1800	
SOLING KEHO	02/04 4	05106	8'	D-04-P1013				1	7 75	265/53	T. 22.2 (1999)		1000	1
SPIALT UNIT	03-6	05111	8.	D-03-P1002		The state of			7 75	286/63	Cw. 1050	1.9	1500	101
LENDING BUILDING	05-7	05107	10'	D-05-P1057					7 75	255 53	_ LM: 1858 .	-1.9	1000	^
PHALT PUMP SKID	05-8	05104	10,	D-05 P1010		-		1 1 5 4 3 4 13	11111	265/53 100/122 100/122		- / 3	1800	Α.
AS LOADING PLANP SKID	05-9	05105	8.	D-05-P1040				1 1 5 5 5 7 1 1	1	1000/122		- 10	1800	16
CAD INJECTION SUMP	05-10	NCHIC.	8.	0-05-P1201	SK B 140		NON	NONE IN	NONC	-1551 155	14 1 7 1	10	1800 1800 1800 1800 1800 1800 1800 1800	
OCESS AREA	901		8 17'	00-0-15064	SK 8 140	15	GOULDS 3171	1 2 5 () (85	6 75	175/40	F	HONE	FAURIL	4
D TRUCK RACK	902		7 13'	1 00-0-15025		14.	AKATER ATIT	1 5 / 3 / 134	- ×	113445	LM-1468	5	1800	6
& AREA #1 CHGS SKID	903		6'	0-05-91071			5 5 1 100	1 2 4 5 3 5 130	1 0 125	100/155	EM-1469	10	1800	161
W AREA #2 SKID 5	904		6'	0-05-P3019		Sec. 8(1) 30	1000 1000 1000	1 35 / 1 5 / 11	8 135	100/70 50/50	TH- 14/0	/ 2	1900	Δ.
FLUENT BLOG WATER ISI	905		6.	0-05-01071 0-05-03019 00-0-15005 00-0-15005 79006-A1-5169-P			100	11.55 6 1 5 9 8	8 125 8 125	50,50	EM-1471	£	1800	4
LUCHT BLOG DIL IN	907		6	00 D-15085	-	0.00		11.54 5 4 65	4 875	50/50 25/92 50/50 50/50	EM-1501	₹.	1800	1 12
LT DRIEB SKID	908 909A/B		6'	79086-A1-5169-P		S		1 25 / 1.5 / 8	8 106	551 35	CM-1473	3	3500	1
DEN MATCH TREATMENT	909A/B		18	00-D 15075			400 000	4 4 6 6 114	6 125	507.50	EM-1474	. €	- 1600 1600	
ME I PM APILARS ITSOU	913			00-D 15075 D-05-P1089	D-05-P10	35		3.6.4.6 110	A AA	- 387.56			1900	1 6
TLTIA MEDE	914 912		6.	D-05-P1098				1,5 4 8 6 115	9.3125	50/50	1		1600 1600 1800 1800	4
BYICL MLDG	912			00-0-15093			5 5 5 5 5 5	11.25 2 1 5 4 8	8.125	50/50 50/50	F 98 9		1000	1 14
LOIG-II ES AJRA MI	921						1	11.25 6 1.5 6 8		50/50	Fu. Line	- 5	1900	1 6
D MLM LOADING	355		37.55	TANKAGE - 914	U-05-P10	35	100 M 100 M	1 . FR C 1 . A C A	W	551.55	CM- 1486 CM- 1472	£ .	1900	101
A ARCA	823		19"	IANEAGE 914			1	1.25 6 1.5 / 6	1			TO STORY	1999	10
NEHATOH BLOG	924				() () () () () () () ()			1 & 1.5 A BS	B			64 202	10 10 40	10
THE STATION SUMP	925						1		- W		1	- 10 E	10 10	101

TANK NO	PHODUCT	CAPACITY / BBL	CAPACITY / GAL	DIAN & HT	ini m	BBL/fT	GAL/[T
192	CHUDE ACSID CINTENTER GLYCOI POUR POINT DEP OILY MATER ALCOHOL KCHO (TUSH	55, 100 27, 700 18, 150 360 588 4, 880	2, 914, 200 1, 163, 400 762, 200 15, 120 28, 812 196, 260 126, 000	102 / 41 9 65 6 / 50 60 / 46 / 12 / 4 32 / 39 / 24 / 24 / 23 /	36.6° 36.0° 34.0° 34.0°	1454 595 504 19 8 20 8	61. 068 24. 990 21. 168 871. 6 873. 8 8568
302	RCAOSI NO	59, 160	2. 442. 720	102' / 41'9"	40.0	1454	61,068
1990 000 000 000 000 000 000 000 000 000		1000 1919 1919 1919 1919 1919 1919 1919	802. 200 808. 790 998. 790 998. 790 198. 770 198. 370 198. 370 198. 370 198. 370 198. 370 198. 460 404. 460 404. 772 401. 772	607 x 244 555 x 277 65 557 x 277 65 44 x 277 65 45 x 277 65 46 x 277 65 47 x 277 65 47 x 277 65 47 x 277 65 48 x	38.0° 35.0° 32.6° 32.6° 33.0° 34.0° 30.0°	504 422 422 771 1271 771 769 5321 771 769 5321 771 769 771 769 771 771 771 771 771 771 771 771 771 77	21.77.1.39.3800.0007.0000.0007.0000.000
822 822 901 05577 05577	ASPITALT AC 2 5-5.0 HAGO HALCO-5541 HALCO-5596 ASPIT ADDIT	23, 900 10, 000 GAL 10, 000 GAL 10, 000 GAL	1. 001. 800 10. 000 19. 000 10. 000	67: x 40:	38'0'	658	26, 376

D 05 1148

٠..

.

MAPCO PETROLEUM, INC.
NORTH POLE REFINERY LAGOON AND STORAGE TANK WASTEWATER ANALYSES
Sample Date: February 10, 1987

PARAMETERS	UNITS	ID#: Time:	LAGOON Ice 021187-5 1345	Liquid 021187-1	Sludge 021187-2 1345	TANK 508 Ice 021187-7 1600	Liquid 021187-4 1645	TANK 509 Ice 021187-6 1430	Liquid 021187-3	METHOD †	NTROL DATA QC Standard	Result	True \
FIELD MEASUREMENTS:				Top/Bottom									
Color			Grey			Clear	Black	Clear	Green	Observation			
Conductivity (field)	µmhos/	/cm		6000/6000	6000		2100		1500	YSI Conductivi	ity/Salinity/Tempe	erature Meter	
	mg/L	and on other		0.2/0.2	< 0.1		<0.3		< 0.3				
Ice Thickness	Inches	i.	18			31.5		34.5	Á	Tape Measure	107:27		
Odor	155			"Sweet"	"Septic"		"Fuel"		"Fuel"	13.18			
pH	pH Unit	As		10.1/8.4	8.4	a .	7.3		7.7	Hanna Instrume	ents "pH Pen"		
	%.	.00		6.0/6.0	6.0		2.1		1.5		ity/Salinity/Tempe	erature Meter	
Sample Depth	Feet			1.5/6.0	7.0		22		22		5 Ti Ti		
Temperature	°C			0.0/3.5	3.5		0.0		0.0	A STATE OF THE PARTY OF THE PAR	ity/Salinity/Tempe	erature Meter	9
LABORATORY ANALYSES:													
BOD5, Soluble	mg/L		33	290	220	40	220	6.0	18	SM 209C/507	(F) ††		
BOD5, Total	mg/L		38	290	2160	53	300	7.0	18		Todysta II		
COD, Soluble	mg/L		250	1200	1220	175	1250	75	475	SM 209C/508	(F)		
COD, Total	mg/L		325	5350	16800	185	5750	100	475				
3-23-23-23-23-3-17-17-22-33-17-	mg/L		1530	7040	16100	1000	7220	362	3790	SM 209A			
Total Volatile Solids	mg/L		128	766	4280	154	684	137	375	SM 209D			
Total Suspended Solids	mg/L		13	14	11700	8.7	26	8.0	18	SM 209C	(F)		
17/			7.3	8.3	4120	6.7	20	5.3	15	SM 209D	(F)		
Total Dissolved Solids	mg/L		1517	7026	4400	991.3	7194	354	3772	By Calculation	1000000		
Volatile Dissolved Solids	mg/L		121	758	160	147	664	132	360	By Calculation	A		
Alkalinity (as CaCO3)	mg/L		140		990	120	680	44	440	EPA 310.1	EPA 384-2	2 17.5	(14.5
Ammonia	mg/L		1.9	11	25	1.1	8.3	<0.1	2.9	SM 417A & D			8
Chloride	mg/L		745	3190	3370	488	3240	177	1750	EPA 325.3	(F) EPA 384-2	2 11.1	(9.8
Conductivity (lab)	µnhos/	Jcm	3200	6000	6200	1950	6500	740	3500	EPA 120.1	Make Stated Francisco		
Cyanide	mg/L			< 0.01	< 0.01		< 0.01		< 0.01	SM 4128 & D	EPA WP17	79 0.238	(0.155 -
Nitrale	mg/L			< 0.1	< 0.1		<0.1		< 0.1	EPA 352.1	(F) EPA 384-2	2 0.15	(0.10
Nitrite	mg/L			< 0.01	0.01		1.2		< 0.01	EPA 354.1	(F)		W-22-11-2
Oil & Grease, Total	mg/L		64	11	65 *	8.7	7.8	2.5	2.7	SM 503B	EPA WP37	79 21.1	(8.8)
Oil & Grease, Floatable	mg/L		18							SM 206B †††			
pH (lab)	Units @	D°C	7.9@14	8.5@14	8.3@17	7.6@18	7.3@16	7.6@18	7.5@13	SM 423			
Phenols	mg/L	A RES	itternot er on.com	2.9		100011001	3.2	Willodd a kinsen	0.13		EPA 179 6	6 0.039	
Phosphate, Total	mg/L		0.30	0.76	1.1	0.14		< 0.10	0.34	SM 424F	(F) EPA 284-8		(1.05
Silica	mg/L		16			9 0		6.4		SM 425C	(F)		11.00
Sullate	mg/L		19.1			<1.0	100	1.0		EPA 375.4	(F) EPA 384-2	2 6.7	(4 49

Sulfide	mg/L		0.17	120		0.15		1.3	Electrode			
Metals:												
Arsenic	mg/L	< 0.001	0.004	0.076	< 0.001	0.007	< 0.001	0.008	EPA 206.2	EPA 284-1	0.032	(0.020 - 0
Calcium	mg/L	40.0	170	906	17.5	118	2.92	52.6	EPA 215.1	EPA 384-2	4.85	(4.52 -
Cadmium	mg/L	0.005	0.008	0.064	0.021	0.011	0.006	0.005	EPA 213.1	EPA 284-2	0.039	(0.031 - 0
Chromium, Hexavalent	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 218.4	EPA 284-2	0.237	(0.209 - 0
Chromium, Total	mg/L	< 0.01	< 0.01	0.23	< 0.01	< 0.01	< 0.01	< 0.01	EPA 218.1	EPA 284-2	0.241	(0.209 - 0)
Copper	mg/L	0.04	< 0.02	1.5	< 0.02	< 0.02	<0.02	< 0.02	EPA 220.1	EPA 284-2	0.360	(0.302 - 0
Iron	mg/L	2.62	1.44	679	0.95	2.58	0.24	0.64	EPA 236.1	EPA 284-2	0.859	(0.695 - 0
Lead	mg/L	0.016	0.002	1.19	0.002	0.003	0.004	0.001	EPA 239 2	EPA 284-1	0.052	(0.034 - 0
Mercury	mg/L	0.0012	< 0.0002	0.0081	0.0012	< 0.0002	0.0006	< 0.0002	EPA 245.1	EPA 378-14	0.0039	(0.0032 - 0.0
Magnesium	mg/L	10.3	37.1	107	6.86	42.7	3.96	32 6	EPA 242.1	EPA 384-2	0.192	(0.137 - 0
Manganese	rng/L	0.284	0.838	12.4	0.751	2.05	0.052	0.411	EPA 243.1	EPA 284-2	0.311	(0.304 - 0)
Potassium	mg/L	7.58	25.0	42.4	5.78	31.4	2.10	13.6	EPA 258.1	EPA 384-2	2.32	(1.70 - :
Sodium	mg/L	1110	1810	1850	955	2350	780	1540	EPA 273.1	EPA 384-2	0.828	(0.727 - 0
Selenium	mg/L	< 0.002	0.003	0.008	< 0.002	0.006	0.004	0.004	EPA 270.2	EPA 284-1	0.011	(0.007 - 0
Silver	mg/L	0.01	0.01	0.04	0.05	0.01	< 0.01	< 0.01	EPA 272.1	EPA 378-14	0.029	(0.021 - 0
Zinc	mg/L	1.14	0.080	10.4	0.150	0.142	0.182	0.055	EPA 289.1	EPA 284-2	0.423	(0.381 - 0
Purgeable Aromatics:									EPA 602/8020	Travel Blank		
Benzene	µg/L		2600	1.4		220		5.8		<0.2	5.3	
Chlorobenzene	μg/L		<10	< 0.3		<20		<1.0		< 0.2		
1,2-Dichlorobenzene	μg/L		<20	< 0.5		<40		<2.0		< 0.4	5.0	
1,3-Dichlorobenzene	µg/L		<20	< 0.5		<40		<2.0		<0.4	5.3	
1,4-Dichlorobenzene	μg/L		<15	< 0.4		<30		<1.5		<0.3	4.2	
Ethylbenzene	µg/L		160	< 0.3		100		<1.0		<0.2	4.4	
Toluene	µg/L		1700	0.73		770		2.6		<0.2	4.6	
Xylenes	μg/L		680	< 0.3		440		1.0		< 0.2		

Formed a very stable emulsion, value may be low.

Field measurements and samples were collected by Michael R. Pollen of Northern Testing Laboratories, Inc. and Michael Lecorchick of Shannon & Wilson, Inc. Purgeable aromatics, cyanide, and grease & oil were run at Northern Testing Laboratories, Inc., Anchorage water quality laboratory.

All other laboratory analyses were run at Northern Testing Laboratories, Inc., Fairbanks water quality laboratory.

REPORTED BY:

DATE: February 26, 1987

Michael R. Pollen, President

SM = Standard Methods, 16th Edition; EPA = EPA Methods for Chemical Analysis of Water & Wastes.

^{†† (}F) = Filtered through a glass liber (suspended solids) litter prior to analysis.

¹¹¹ Modified Method.

П

SECTION 5

WASTE WATER DISPOSAL AGREEMENT

THIS AGREEMENT made and entered into this _____ day of March, 1987, by and between MAPCO PETROLEUM Inc., an Alaska corporation (hereinafter referred to as "MPI"), and the City of North Pole, Alaska (hereinafter referred to as the "City");

WITNESSETH:

WHEREAS, MPI owns and operates a petroleum refinery in North Pole, Alaska, and desires to dispose of its pretreated waste water from said refinery; and

WHEREAS, the City operates a lagoon system treatment plant in North Pole, Alaska for the treatment and disposal of such waste water; and

WHEREAS, MPI desires to dispose of and City desires to accept MPI's pretreated waste water at City's lagoon system treatment plant in North Pole, Alaska;

NOW, THEREFORE, for and in consideration of the mutual covenants and agreements hereinafter stated, the parties agree as follows:

- 1. <u>Disposal of Waste Water</u>. MPI shall pay to the City for the disposal by MPI of approximately 3,000,000 gallons of tested, pretreated waste water in accordance with the following rate schedule:
 - \$3.10 per gallon for the first 1,000 gallons;
 - \$2.75 per gallon for the next 25,000 gallons;
 - \$2.20 per gallon for all gallons over the initial 26,000 gallons.

Actual gallons transferred shall be determined by MPI by tank strapping both before and immediately following the transfer. Payment for gallons transferred shall be made by MPI on a monthly basis for all waste water transferred to the City in the preceding month.

- 2. <u>Disposal Procedures</u>. MPI shall dispose of waste water presently stored in refinery tankage through the City's lagoon system treatment plant by way of truck or a temporary overland pipeline to be installed and maintained at MPI's expense.
- 3. Testing of Waste Water. Prior to initiating deliveries of waste water to the City, MPI shall obtain testing of samples of the pretreated waste water, and testing results shall be reviewed by the City advisor and Northern Testing Laboratories, Inc., or at MPI's option a similar outside consulting firm with experience in such testing procedures and interpretation of results. Upon completion of testing with favorable results, the waste water shall be transported by MPI to the City's lagoon area.
- 4. <u>Compliance with Laws</u>. In the treatment and disposal of its waste water, MPI shall comply with all applicable federal, state and local laws, rules and regulations, including but not limited to, regulations of the Environmental Protection Agency and the State of Alaska Department of Environmental Conservation.

- 5. Indemnification. MPI shall indemnify and hold harmless the City, its officers, representatives, agents or employees from and against any and all expenses, claims, damages or liabilities arising out of its storage, treatment or disposal of waste water prior to transfer of the same to the City, and the City shall indemnify and hold MPI, its affiliated companies and their officers, directors, employees, representatives and agents harmless from and against any and all expenses, claims, damages or liabilities arising out of its storage, treatment or disposal of the waste water after the transfer of the same to the City.
- 6. Representations and Warranties of MPI. MPI represents and warrants to the City as follows:
 - A. MAPCO PETROLEUM Inc. is a corporation, duly organized and existing and in good standing under the laws of the State of Alaska, and is duly authorized to conduct business in the State of Alaska.
 - B. MPI has full power to execute and perform this Agreement and to transfer the waste water as herein provided, and such execution and performance does not conflict with any provisions of its Articles of Incorporation or By-Laws, or with any contract to which it is a party or to which it is subject. The execution and delivery of this Agreement and all of the transactions provided for in this Agreement have been duly authorized by MPI and are and will be in all respects legally binding upon MPI.

- 7. Representations and Warranties of City. City represents and warrants to MPI as follows:
 - A. City is a municipality duly organized and existing under the laws of the State of Alaska and in accordance with the ordinances of the City of North Pole.
 - B. City has full power and authority to execute and perform this Agreement and its lagoon system treatment plant has full capacity to accommodate MPI as herein provided. The execution and performance of this Agreement does not conflict with any provisions of its City Charter, ordinances or with any contract to which it is a party or to which it is subject.

 The execution and delivery of this Agreement, and all transactions provided for in this Agreement, have been duly authorized by the City Council and are and will be, in all respects, legally binding upon the City.

8. Miscellaneous.

A. This Agreement shall be binding upon and inure to the benefit of the parties hereto and their respective successors and assigns. Notwithstanding the foregoing, neither party shall assign this Agreement in whole or in part, without the prior written consent of the other party.

- B. This Agreement shall be construed according to the laws of the State of Alaska and the parties hereto agree to be subject to the jurisdiction of the State and Federal courts located therein.
- C. All warranties, representations and agreements contained in this Agreement shall survive the execution and delivery of all documents required hereunder and the payment of all sums required hereunder.
- D. Any notices, requests and demands relating to this Agreement shall be in writing and shall be deemed to have been duly given if personally delivered or if deposited in the United States mails, postage prepaid, return receipt requested, (1) if to MPI, at 1100 H & H Lane, North Pole, Alaska 99706, Attention: Gerald E. Fritz, or at such other address as MPI may have furnished to City in writing, or (2) if to City, at P.O. Box 55109, North Pole, Alaska 99705, Attention: Mayor of the City of North Pole, or such other address as the City may have furnished to MPI in writing.
- E. The captions used herein are for convenience only and are not a part of this Agreement, and shall be disregarded for purposes of construction.
- F. This Agreement may be executed in counterpart originals, each of which shall be deemed as original, but all of which together shall constitute one and the same instrument.

IN WITNESS WHEREOF, the parties have executed this Agreement the day and year first above written.

"CITY" "MPI"

City of North Pole, Alaska MAPCO PETROLEUM Inc.

Ву A. L. Wright, Jr. Carleta Lewis Vice President

Mayor of the City of North Pole, Alaska